Functional Programming

Student’s Name

Department, Institutional Affiliation

Course Name and Number

Professor’s Name

Due Date

Functional Programming

Functional Programming is a programming paradigm that treats computation as the
evaluation of mathematical functions. FP emphasizes immutability, pure functions, and the
avoidance of mutable state and side effects. It provides benefits such as improved code

clarity, testability, and concurrency.

Immutability

In functional programming, immutability is preferred to avoid unexpected changes
and side effects. To achieve immutability in C++, const variables and references can be

utilized (Flovén, 2019). Example in Figure 1 below.

Figure 1

The screenshot below shows the implementation of immutability.

< std::zendl;
< std:zendl;

ne,n

The variables "x" and "y" are declared as const, preventing their modification.

Pure Functions

Pure functions have no side effects and consistently provide the same outcome for the
same input. They don't alter any external states; they just rely on their input parameters. It is
possible to build pure functions in C++ by removing global variables and using const

arguments (EventHelix, 2020). Example in Figure 3 below.

Figure 2

The screenshot below shows an implementation of pure functions.

square (num) ;

<< result << std::endl;

The "square()" function is a pure function that calculates the square of an integer without

modifying any external state.

Higher-Order Functions

Higher-order functions accept parameters from other functions and return results from
other functions. They make it possible to compose functions and create strong abstractions.
Higher-order functions can be implemented more easily in C++ thanks to function pointers

and lambda expressions (McNamara & Smaragdakis, 2000). Example in Figure 5 below.

Figure 3

The screenshot below shows an implementation of higher-Order Functions.

(X, {*operation)({
result = operation(x, y);

:ocout << << result << std::endl;

applyOperation(numl, num2, [I(a,

applyOperation({numl, num2, [I(a,

The "applyOperation()" function takes a function pointer as an argument and applies the

operation to the given numbers.

References

EventHelix. (2020, August 13). Pure functions in C++.
Medium. https://medium.com/software-design/pure-functions-in-c-fc102fd9c5e0
Flovén, F. (2019, April 29). Immutability.
Medium. https://medium.com/@ffloven/immutability-4c8e0077fe9a
McNamara, B., & Smaragdakis, Y. (2000). Functional programming in C++. Proceedings of
the fifth ACM SIGPLAN international conference on Functional

programming. https://doi.org/10.1145/351240.351251

https://medium.com/software-design/pure-functions-in-c-fc102fd9c5e0
https://medium.com/@ffloven/immutability-4c8e0077fe9a
https://doi.org/10.1145/351240.351251

