
1

Memory Management in Modern C++

Student’s Name

Department, Institutional Affiliation

Course Number and Name

Instructor’s Name

Due Date



2

Memory Management in Modern C++

Memory management in C++ is crucial for the efficient allocation and deallocation of

memory resources. Traditional C++ programming presents challenges such as explicit memory

allocation, memory leaks, and dangling pointers. However, modern C++ introduces effective

techniques to overcome these challenges.

Explicit memory allocation and deallocation in C++ require developers to manually

allocate memory using functions like “new” and deallocate it using “delete”. According to

Nirwan (2021), although this approach provides control over memory usage, it can lead to

memory leaks when dynamically allocated memory is not released. As a result, it causes system

performance degradation and instability.

Dangling pointers are another issue in memory management, referring to memory that

has been deallocated. Accessing memory through dangling pointers results in undefined behavior

(Goyal, 2023). This situation arises when pointers are not updated or invalidated after memory

deallocation.

Demonstration of how “new” and “delete” functions are used:



3

Figure 1 Use of "new" and "delete" functions in memory allocation and deallocation

Modern C++ addresses these challenges through the use of smart pointers. Smart

pointers, such as std::unique_ptr, std::shared_ptr, and std::weak_ptr, provide a safer alternative

for managing dynamic memory. They automatically handle memory deallocation, eliminating the

risks of memory leaks and dangling pointers (Patil, 2021). Smart pointers manage the lifetimes

of dynamically allocated objects, ensuring proper deallocation when they are no longer needed.

Below is a demonstration of how smart pointers are used:



4

Figure 2 Use of smart pointers such as unique_ptr, shared_ptr, and weak_ptr

In conclusion, modern memory management techniques in C++ effectively address the

challenges posed by traditional approaches. Smart pointers ensure proper memory deallocation,

eliminating memory leaks and dangling pointers. By adopting these techniques, C++ developers

can improve the performance and stability of their programs.



5

References

Goyal, S. (2023, April 25). Unstop. Pointers in C++ | A Roadmap To All Types Of Pointers With

Examples. https://unstop.com/blog/pointers-in-cpp

Nirwan, D. (2021, October 22). C++ memory allocation/Deallocation for data processing.

Medium. https://towardsdatascience.com/c-memory-allocation-deallocation-for-data-proc

essing-1b204fb8a9c

Patil, S. (2021, June 24). Smart pointers in C++ - Part 1. Codementor | Get live 1:1 coding help,

hire a developer, &

more. https://www.codementor.io/@sandesh87/smart-pointers-in-c-1j6d1b74l6

https://unstop.com/blog/pointers-in-cpp
https://towardsdatascience.com/c-memory-allocation-deallocation-for-data-processing-1b204fb8a9c
https://towardsdatascience.com/c-memory-allocation-deallocation-for-data-processing-1b204fb8a9c

