
1

Object-Oriented Programming

Student’s Name

Department, Institutional Affiliation

Course Name and Number

Professor’s Name

Due Date



2

Object-Oriented Programming

Object-Oriented Programming (OOP) is a way of structuring and designing code that

emphasizes creating reusable and modular components called “objects”. An object contains

both data, which represents its attributes, and operations, which are the methods that

manipulate that data.

Core Principles of OOP

Encapsulation

Encapsulation is a key concept in Object-Oriented Programming (OOP) that plays a

fundamental role in organizing code. It revolves around grouping data and its associated

methods within a class. One of the benefits of encapsulation is that it enables data hiding,

which means that the internal state of an object is protected from direct external access.

Inheritance

Inheritance is a powerful concept in programming that enables the creation of new

classes by building upon existing ones. It works by establishing a relationship between a base

class and a derived class. The derived class inherits the properties and behaviors defined in

the base class, which allows for code reuse and specialization.

Polymorphism

Polymorphism is a concept in programming that allows objects to exhibit different

behaviors or forms depending on the situation they are in. On the other hand, function

overriding involves redefining a method in a derived class that already exists in its base class.

This enables the derived class to provide its own implementation of the method, allowing for

customized behavior while maintaining a consistent interface.

Implementation in C++



3

Figure 1

Below is an example of a class definition for a "Rectangle" object:

In the example above, the "width" and "height" attributes of the Rectangle class are

encapsulated and made private. Access to these attributes is provided through public

methods, such as "setDimensions()" and "calculateArea()".

Figure 2

In the figure below, the "Shape" class is the base class, and the "Circle" class is derived from

it.



4

The "draw()" method is overridden in the derived class, allowing for polymorphic behavior.


