Student's Name

Professor's Name

Course

Date

Generalized Stokes Theorem in \mathbb{R}^{n}

The generalized Stokes theorem is a result in multivariable calculus that states (Spivak 102) that if $D \subset \mathbb{R}^{n}$ is a homeomorphic image of some k-cube $[0,1]^{k}=[0,1] \times \cdots \times[0,1] \subset \mathbb{R}^{k}$ and ω is a differentiable form on D, then

$$
\int_{D} d \omega=\int_{\partial D} \omega \quad(\mathrm{Eq} \cdot 1)
$$

The existence of a continuous bijective function $l:[0,1]^{k} \rightarrow D$ such that its inverse $\iota^{-1}: D \rightarrow[0,1]^{k}$ is continuous is assumed so that the existence of a global parametrization on D with $k \leq n$ variables is guaranteed. The set $\partial D=\imath\left(\partial[0,1]^{k}\right)$ is the boundary of D, therefore, the image of each face of $[0,1]^{k}$ is parametrized by $k-1$ variables. Forms generalize differentials of functions in single variable calculus: 0 -forms are just differentiable scalar fields on D. There are defined directional differentials $d x_{1}, \ldots, d x_{n}$ derived from the parametrization l and every 1 -form α is written as a linear combination

$$
\begin{equation*}
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \cdot\left(d x_{1}, \ldots, d x_{n}\right)=\alpha_{1} d x_{1}+\cdots+\alpha_{n} d x_{n} \tag{Eq.2}
\end{equation*}
$$

where each α_{i} is a 0 -form. On the basis $\left\{d x_{1}, \ldots, d x_{n}\right\}$ it is defined a wedge product $d x_{i} d x_{j}$ that is associative and anticommutative (the latter implies $d x_{i} d x_{i}=0$ for every i).

The element $d x_{i} d x_{j}$ defines a differential for area, the element $d x_{i} d x_{j} d x_{l}$ defines a differential for volume and so on. Therefore, 2-forms are linear combinations of differentials of area, 3-forms are linear combinations of differentials of volume and so on in the fashion of equation (Eq. 2) (Warner 63). For $k=n$, there is only one non-zero basic differential $d x_{1} \cdots d x_{n}$ of n-volume. The exterior derivative is a linear operator d that transforms $(k-1)$-forms into k-forms and acts on the 0 -forms by making

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n} \tag{Eq.3}
\end{equation*}
$$

For example, if
$\omega=\omega_{1} d x_{2} d x_{3} d x_{4}+\omega_{2} d x_{3} d x_{4} d x_{1}+\omega_{3} d x_{4} d x_{1} d x_{2}+\omega_{4} d x_{1} d x_{2} d x_{3}$ is a 3-form on $D \subset \mathbb{R}^{4}$, then $d \omega$ is the 4-form

$$
\begin{array}{rc}
d \omega= & \left(\frac{\partial \omega_{1}}{\partial x_{1}} d x_{1}+\frac{\partial \omega_{1}}{\partial x_{2}} d x_{2}+\frac{\partial \omega_{1}}{\partial x_{3}} d x_{3}+\frac{\partial \omega_{1}}{\partial x_{4}} d x_{4}\right) d x_{2} d x_{3} d x_{4} \\
& +\left(\frac{\partial \omega_{2}}{\partial x_{1}} d x_{1}+\frac{\partial \omega_{2}}{\partial x_{2}} d x_{2}+\frac{\partial \omega_{2}}{\partial x_{3}} d x_{3}+\frac{\partial \omega_{2}}{\partial x_{4}} d x_{4}\right) d x_{3} d x_{4} d x_{1} \\
& +\left(\frac{\partial \omega_{3}}{\partial x_{1}} d x_{1}+\frac{\partial \omega_{3}}{\partial x_{2}} d x_{2}+\frac{\partial \omega_{3}}{\partial x_{3}} d x_{3}+\frac{\partial \omega_{3}}{\partial x_{4}} d x_{4}\right) d x_{4} d x_{1} d x_{2} \\
& +\left(\frac{\partial \omega_{4}}{\partial x_{1}} d x_{1}+\frac{\partial \omega_{4}}{\partial x_{2}} d x_{2}+\frac{\partial \omega_{4}}{\partial x_{3}} d x_{3}+\frac{\partial \omega_{4}}{\partial x_{4}} d x_{4}\right) d x_{1} d x_{2} d x_{3} \\
= & \frac{\partial \omega_{1}}{\partial x_{1}} d x_{1} d x_{2} d x_{3} d x_{4}+\frac{\partial \omega_{2}}{\partial x_{2}} d x_{2} d x_{3} d x_{4} d x_{1}+\frac{\partial \omega_{3}}{\partial x_{3}} d x_{3} d x_{4} d x_{1} d x_{2}+\frac{\partial \omega_{4}}{\partial x_{4}} d x_{4} d x_{1} d x_{2} d x_{3} \\
= & \left(\frac{\partial \omega_{1}}{\partial x_{1}}-\frac{\partial \omega_{2}}{\partial x_{2}}+\frac{\partial \omega_{3}}{\partial x_{3}}-\frac{\partial \omega_{4}}{\partial x_{4}}\right) d x_{1} d x_{2} d x_{3} d x_{4}
\end{array}
$$

The generalized Stokes theorem (Eq. 1) summarizes several fundamental results in calculus. If $D=[a, b] \subset \mathbb{R}$ and f is a 0 -form on D, then $d f=f^{\prime}(x) d x$ and equation (Eq. 1) becomes

$$
\int_{[a, b]} d f=\int_{\{a, b\}} f \quad(\mathrm{Eq} \cdot 4)
$$

or

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a) \quad(\text { Eq. } 5)
$$

which is the second fundamental theorem of calculus. If $D \subset \mathbb{R}^{2}$ is homeomorphic to $[0,1]^{2}$ and $f=f_{1} d x+f_{2} d y$ is a 1-form, then $d f=\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) d x d y$ and
equation (Eq. 1) becomes

$$
\begin{equation*}
\iint_{D}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) d x d y=\oint_{\partial D} f_{1} d x+f_{2} d y \tag{Eq.6}
\end{equation*}
$$

which is Green's theorem (Marsden and Tromba 431). If $D \subset \mathbb{R}^{3}$ is a bounded surface homeomorphic to $[0,1]^{2}$ and $\omega=f \cdot(d x, d y, d z)$ is a 1-form, then $d \omega=\operatorname{curl}(f) \cdot(d y d z, d z d x, d x d y)$ and equation (Eq. 1) becomes

$$
\begin{equation*}
\iint_{D} \operatorname{curl}(f) \cdot(d y d z, d z d x, d x d y)=\oint_{\partial D} f \cdot(d x, d y, d z) \tag{Eq.7}
\end{equation*}
$$

which is classical Stokes theorem. Furthermore, if $U \subset \mathbb{R}^{3}$ is homeomorphic to $[0,1]^{3}$ and $\omega=f \cdot(d y d z, d z d x, d x d y)$ is a 2-form, then $d \omega=\operatorname{div}(f) d x d y d z$ and equation (Eq. 1) becomes

$$
\begin{equation*}
\iiint_{U} \operatorname{div}(f) d x d y d z=\oiint_{\partial U} f \cdot(d y d z, d z d x, d x, d y) \tag{Eq.8}
\end{equation*}
$$

which is the divergence theorem.

Works Cited

Marsden, Jerrold E., and Anthony Tromba. Vector Calculus. 6th ed., W. H. Freeman and Company, 2012.

Spivak, Michael. Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. Addison-Wesley, 1965.

Warner, Frank W. Foundations of Differentiable Manifolds and Lie Groups. Springer, 1983.

